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Abstract

In this paper we present an expert system to perform steady-state response predictions. We consider an aeroelastic model

simulating a two degree-of-freedom airfoil oscillating in pitch and plunge with a freeplay nonlinearity in the pitch degree-

of-freedom. In the proposed data-driven methodology, a freeplay is first confirmed, and then the locations of the switching

points are determined. A state-space formulation is constructed to model the piece-wise linear system. The parameters of

the system are estimated using the Kalman filter and the expectation maximization algorithm. The attractive feature of the

present approach is its ability to accurately predict the steady-state behavior of the nonlinear aeroelastic system with

freeplay, using only a limited amount of transient input data. To demonstrate the effectiveness of the proposed

methodology, we present applications to freeplay aeroelastic data arising from wind tunnel experiments and numerical

simulations.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In applications of a data analysis tool to study complex engineering problems, we usually start with known
measured data, and then construct a dynamical model capable of exhibiting a behavior consistent with the
given data. Depending upon the problem under investigation, the dynamical model may be linear or
nonlinear. Here, we propose a data-driven methodology to perform steady-state response predictions for
nonlinear aeroelastic systems with freeplay.

In general, nonlinear behavior in aeroelasticity arises either from the aerodynamics or from the structure.
In transonic flow regimes, the nonlinearities in aerodynamics cannot be ignored due to the presence of shock
oscillations. However, in low speed regimes, linear aerodynamics is usually assumed. In the structure,
nonlinearities may occur in the restoring forces, and can be classified as polynomial springs or piece-wise linear
types, such as freeplay or hysteresis. Freeplay nonlinearity can occur in the control surfaces or components
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

detð�Þ the determinant of a matrix
E½�� expected value
E½�j�� conditional expectation
hN bandwidth parameter
Kð�Þ Kernel function
N number of observations
Pð�Þ probability
t non-dimensional time
a pitch angle

af beginning of the freeplay
d freeplay
x non-dimensional plunge displacement
j � j the absolute value of a real number

Superscript

0 first-order time derivative
00 second-order time derivative
T transpose of a vector or matrix
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with loose joints. It has been observed that even a small amount of freeplay could lead to limit cycle
oscillations (LCOs) [1].

In wind tunnel experiments, it is of great importance to be able to forecast the subsequent behavior of an
aircraft or control surfaces soon after the tests are initiated. Catastrophic consequences due to structural
failure can be avoided if we know the possibility of encountering divergent flutter, limit-cycle oscillations, or
chaotic behavior before they occur. Also, CFD/FE computations are time consuming and expensive. To be
able to predict the eventual behavior of an aeroelastic system after only a few cycles of computations have
been completed is highly desirable. Thus, any methodology that can predict long term behavior using a short
segment of transient data is of particular interest in nonlinear aeroelasticity.

In recent years there was a growing interest to develop new data-driven steady-state prediction procedures.
In Refs. [2,3] neural networks and nonlinear time series models are developed to predict the aeroelastic
responses. A system identification method for predicting the aeroelastic behavior of the aircraft subjected to
nonlinear aerodynamic forces is applied to simulated data in Ref. [4].

In this paper, we continue our work presented in Ref. [5], and we propose an expert system (ES) for
predicting the behavior of aeroelastic systems with freeplay nonlinearities. The flowchart for the proposed ES
is shown in Fig. 1. We consider an airfoil with a two degree-of-freedom (dof) motion in pitch and plunge. The
freeplay is imposed in the pitch dof. If the locations of the two switching points are known, the model can be
divided into a set of three linear systems. Consequently, linear system identification techniques can be
Start

Stop

Input limited aeroelastic data

Non−parametric method to identify
the freeplay

Yes

EM algorithm to estimate 
parameters

No Stop

Output aeroelastic response

Perform prediction

Fig. 1. Flowchart for expert system for freeplay aeroelastic prediction.
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effectively applied for this particular case. Thus, the crucial step in the proposed methodology is the
identification of a freeplay from the given data. Higher order spectral analysis is a popular method for
detecting the nonlinear structure of aeroelastic data [6–9]. However, the bispectral methods are useful mainly
to detect polynomial nonlinearities. To determine the presence and the parameters of a freeplay nonlinearity,
we propose a different approach based on non-parametric estimations. If a freeplay is not detected, the
procedure is terminated. Otherwise, the locations of the two switching points are determined and the
aeroelastic model is represented by a discrete switching state-space system. The linear Kalman filter and
the expectation–maximization (EM) algorithms are employed to estimate the parameters of the system.
Predictions of the steady-state response of the aeroelastic system can then be carried out.

To illustrate the proposed approach, examples of short time duration experimental and numerically
simulated aeroelastic data used as the input of the ES are shown in Fig. 2. The data ‘‘a’’, ‘‘b’’ and ‘‘c’’ represent
the time histories of the pitch motion measured from experiments, whereas ‘‘d’’ is the pitch time history
generated from numerical simulation. It is difficult to forecast the long term aeroelastic behavior using only
the information given in this figure. From the short duration time series a simple guess suggests that for ‘‘a’’
the amplitude will continue to increase leading to divergence; for ‘‘b’’, the damped oscillations will eventually
give a steady non-oscillating solution; and for both ‘‘c’’ and ‘‘d’’, the oscillations will continue with a constant
amplitude leading to LCOs. However, the aeroelastic responses actually turn out to be a LCO for ‘‘a’’, a
section of a LCO before reaching a steady non-oscillating state for ‘‘b’’, a steady non-oscillating solution for
‘‘c’’, and a divergent oscillation for ‘‘d’’. Using the proposed expert system it will be demonstrated that the
steady-state behavior for all these cases can be correctly predicted from the short time segment given in Fig. 2.
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Fig. 2. Samples of input data for the expert system representing: (a) limit cycle oscillation, (b) damped signal, (c) damped signal and

(d) divergent oscillations.
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2. The aeroelastic model

Consider a two-dimensional aeroelastic system modeling an airfoil oscillating in pitch and plunge. The
mathematical formulation can be expressed by the following coupled system of equations:

x00 þ xaa00 þ 2zx
~o

U�
x0 þ

~o
U�

� �2

GðxÞ ¼ �
1

pm
CLðtÞ (1)

xa

r2a
x00 þ a00 þ 2

za
U�

a0 þ
1

U�2
MðaÞ ¼

2

pmr2a
CM ðtÞ, (2)

where xa, ra, za, zx, ~o, U�, m are airfoil parameters, and they are defined in [10]. The nonlinear plunge and
pitch stiffness terms are denoted by GðxÞ and MðaÞ. Here, we assume the flow is in the low speed regime, and
the lift and pitching moment coefficients CLðtÞ, CM ðtÞ can be expressed analytically using the Wanger
functions [10]. By introducing four new variables o1, o2, o3, o4, the integro-differential system (1)–(2) can be
rewritten as a system of 8 nonlinear ordinary differential equations:

X0t ¼ AXt þ FðXtÞ, (3)

where A is a matrix containing the system coefficients, F is a nonlinear function, and Xt is a vector which is a
function of time, and we have Xt ¼ ½a; a0; x; x

0;o1;o2;o3;o4�
T. The expressions for CLðtÞ, CMðtÞ and the

derivation of the complete system can be found in Ref. [10].
In this study, we consider linear aerodynamics because the free stream velocity is assumed to be low. We

impose the structural nonlinearity only in the pitch dof. Common examples of structural nonlinearities are
springs with freeplay or cubic restoring forces. For freeplay the pitch stiffness term is defined by

MðaÞ ¼

a� af if aoaf ;

0 if af papaf þ d;

a� af � d if a4af þ d;

8><
>: (4)

and for cubic nonlinearity, MðaÞ is given by

MðaÞ ¼ a3a3 þ a2a2 þ a1aþ a0. (5)

In Fig. 3, we illustrate the general behavior of these two types of nonlinearities. We notice that an impor-
tant feature of a freeplay nonlinearity is the existence of two switching points. The aeroelastic model can be
divided into three regions separated by the locations of the switching points. Different linear systems apply
in each region, so that using Eq. (3) in Eq. (4), the model for the aeroelastic system with freeplay can be
Displacement x

M (x)

Displacement x

αf δ

M (x)

Fig. 3. General sketch for structural nonlinearities: (a) cubic spring and (b) freeplay.



ARTICLE IN PRESS
C.A. Popescu et al. / Journal of Sound and Vibration 319 (2009) 1312–13291316
written as

X0t ¼ AXt þ F1 if X tð1Þoaf ;

X0t ¼ BXt þ F2 if af pX tð1Þpaf þ d;

X0t ¼ AXt þ F3 if X tð1Þ4af þ d;

8><
>: (6)

where X tð1Þ ¼ a is the first component of the 8-dof vector Xt. Here, A and B are 8� 8 matrices, and Fi,
i ¼ 1; 2; 3 are eight-dimensional vectors.

The corresponding discrete formulation can be written as

xkþ1 ¼ A1ðtÞxk þ b1ðtÞ if xkð1Þoaf ;

xkþ1 ¼ A2ðtÞxk þ b2ðtÞ if af pxkð1Þpaf þ d;

xkþ1 ¼ A3ðtÞxk þ b3ðtÞ if xkð1Þ4af þ d;

8><
>: (7)

where t is a sufficiently small time step, t ¼ kt, Ai, i ¼ 1; 2; 3 are 8� 8 matrices, A3 ¼ A1, and bi, i ¼ 1; 2; 3 are
eight-dimensional vectors.

3. Identification of the freeplay nonlinearity

Since our focus is on the identification of the freeplay nonlinearity, we consider a time-domain non-
parametric method proven to be especially useful in the study of piece-wise linear models.

To estimate the regression curve mðxÞ ¼ E½Y jX ¼ x� using a set of observations fðX i;Y iÞ; i ¼ 1; . . . ;Ng, if
repeated observations Y i at X ¼ x are available, a simple solution would be to average these values.
Unfortunately, this may not be applicable to aeroelastic data, if the information is given by the transient
state. Nevertheless, if the function mðxÞ is sufficiently smooth, then the values Y i for which X i is close to x

provide good approximations of mðxÞ. Thus, instead of using a simple averaging, we consider a weighted
average approach with smaller weights for Y i with X i far away from x, and larger weights for Y i with X i close
to x:

m̂ðxÞ ¼
1

N

XN

i¼1

wiðxÞY i. (8)

The weights wi are represented using a kernel Kð�Þ which describes the shape, and a bandwidth parameter hN

which adjusts the size of the weights near x. The kernel is usually a continuous probability density function:
KðuÞX0, and

R
KðuÞdu ¼ 1. The Naadaraya–Watson estimator [11] was developed based on this idea, and the

general form is given by

m̂ðxÞ ¼
XN

i¼1

Y iKN ðx� X iÞ

,XN

i¼1

KN ðx� X iÞ, (9)

where KN ðuÞ ¼ h�1N Kðu=hNÞ. Comparing Eqs. (8) and (9), we note that the weights wi sum to N and m̂ðxÞ is
adaptive to the local intensity of the X variable. The consistency of the Naadaraya–Watson estimator (i.e. the
convergence of m̂ðxÞ to mðxÞ as n!1) can be proved under reasonable assumptions [11].

Many possible kernels Kð�Þ can be used in Eq. (9), but the choice is usually limited due to theoretical and
practical considerations. For example, computational requirements may restrict to kernels that are zero
Table 1

Kernel functions

Kernel KðuÞ

Triangle ð1� jujÞI ½�1;1�ðuÞ

Epanechnicov 3ð1� u2ÞI ½�1;1�ðuÞ=4
Gaussian expð�u2=2Þ=

ffiffiffiffiffiffi
2p
p
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outside a certain interval. Table 1 presents three commonly used kernels which have been studied in Ref. [12]
for the density estimation. The triangular and the Epanechnikov kernels are expressed in terms of the indicator
function I ½�1;1�ð�Þ, and they are zero outside the interval ½�1; 1�. The Gaussian kernel is a continuous and
differentiable function.

Kernel functions can be rescaled so that the differences between the estimates corresponding to different
kernels are negligible [12]. Hence, by rescaling the bandwidth instead of changing the kernel functions, the
choice of the kernel is not critical in practical implementations. However, the selection of the bandwidth
parameter hN is important for the interpretation of m̂ðxÞ. The value of hN can be chosen automatically using
the leave-on-out cross-validation method [13]. In some cases, a subjective choice of hN is more desirable.
For instance, if our interest is on the local structures, then a slightly under-smoothed curve resulting from a
smaller bandwidth may be more appropriate. On the other hand, increasing the bandwidths will lead to over-
smoothed curves, and subsequently to an increase in the signal-to-noise ratio.

Non-parametric methods are used to determine the thresholds for self-exciting threshold autoregressive
models (SETAR) [14]. Let ft0; t1; . . . ; tlg denote the thresholds, i.e., a linearly ordered subset of real numbers,
such that t0ot1o � � �otl , t0 ¼ �1 and tl ¼ þ1. A SETAR ðl; p; . . . ; pÞ, where p is repeated l times, is a uni-
variate time series fX ng of the form

X n ¼ a
ðjÞ
0 þ

Xp

i¼1

a
ðjÞ
i X n�i þ en; tj�1oX n�dptj, (10)

for j ¼ 1; 2; . . . l, where d is a fixed integer belonging to f1; 2; . . . ; pg, and feng is a Gaussian, independent,
identically distributed white noise sequence. If for j ¼ 1; 2; . . . ; l, we have a

ðjÞ
i ¼ 0 for i ¼ pj þ 1; pj þ 2; . . . ; p;

then fX ng is known as a SETARðl; p1; p2; . . . ; plÞ model. Hence, a SETARð1; pÞ model is equivalent to a linear
autoregressive model of order p.

By defining the vector Yn ¼ ðX n; . . . ;X n�pþ1Þ
T, a SETARðl; p; p; . . . ; pÞ model can be rewritten in the

following form:

Yn ¼ fðYn�1Þ þ En, (11)

where En ¼ ðen; 0; . . . ; 0Þ
T, fðYn�1Þ ¼ ðhðYn�1Þ;X n�1; . . . ;X n�pþ1Þ

T, and hðYn�1Þ is given in the right-hand side
of Eq. (10).

The crucial task when working with SETAR models is to determine the thresholds and the delay parameter d.
Tong [14] suggests the use of a non-parametric lag regression estimation. If mjðxÞ ¼ E½X nj X nþj�, replacing in
Eq. (9) a non-parametric kernel estimate m̂jðxÞ for mjðxÞ is

m̂jðxÞ ¼
XN

i¼�jþ1

X iKN ðx� X iþjÞ

, XN

i¼�jþ1

KN ðx� X iþjÞ, (12)

for j ¼ �s; . . . ;�1, where s is a positive integer much smaller than the size of the data set N (see Refs. [13,14]).
The triangular kernel given in Table 1 is employed in Ref. [14], where

KNðuÞ ¼
ð1� juj=hNÞ=hN if jujphN ;

0 otherwise:

�
(13)

A similar formula can be written for the non-parametric estimates v̂jðxÞ of the variance vjðxÞ ¼ VARðX nj

X nþjÞ. The thresholds and the delay parameter d can be determined by analyzing the plots of m̂jðxÞ and v̂jðxÞ

for various values of j.
The above discussion focuses on the non-parametric procedure for estimating the thresholds and delay

parameters of SETAR models. However, this procedure is closely related to the present study. Obviously there
are many similarities among the state-space formulations arising from the SETAR models and the aeroelastic
models with freeplay. Recall that according to the locations of the switching points, the aeroelastic model with
freeplay can be divided into three regions, and each region is governed by a different linear system as shown in
Eq. (7). Hence, both models exhibit the common piece-wise linear characteristic, in which the changes depend
on the values of the thresholds and delay parameters for the SETAR models, and on the switching points for
the aeroelastic models with freeplay. Thus, by using a non-parametric estimation procedure to identify the
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existence of the switching points, we can effectively confirm the presence of the freeplay nonlinearity for a
given set of aeroelastic data.

4. Parameter estimation

The EM algorithm [15] is a powerful tool for parameter estimation. This algorithm is a classical method for
estimating the parameters of linear systems [16], and it is particularly effective when dealing with incomplete
or missing data. For a general nonlinear dynamical system, the EM algorithm has been applied using the
extended Kalman filter for smoothing [17], and it has been employed in conjunction with neural networks [18].

The EM algorithm is especially useful when it is straightforward to compute the likelihood of the model
using not only the observed data Yobs, but also some hidden data Yhid. In the present study, although only the
pitch angle and the plunging displacement are measured, their derivatives are also present in the aeroelastic
model. The EM algorithm is implemented by a data augmentation scheme, such that the observed data are a
mapping of the augmented data Yobs ¼ mðYaugÞ, where Yaug ¼ fYobs;Yhidg. The algorithm starts with an initial
guess y0 for the unknown parameters and iteratively improve the estimation y�. At each iteration, the EM
algorithm consists of two steps: the expectation (E) step which computes the expectation of the likelihood; and
the maximization (M) step which computes the updated estimations of the parameters by maximizing the
results obtained in the E-step.

More precisely, using the current estimation yn of the parameters, the E-step computes the conditional
expectation of the augmented data log-likelihood QðyjynÞ ¼ E½log pðyjYaugÞj Yobs; yn�. An approximation may
be required during the E-step. In order to justify the convergence, it is important to note that the negative of
the free-energy is maximized [15] with respect to the distribution component:

Qnþ1 ¼ arg max
Q

FðQ; ynÞ, (14)

where

FðQ; yÞ ¼
Z

QðYhidÞ log pðyjYaugÞdYhid �

Z
QðYhidÞ logQðYhidÞdYhid. (15)

The M-step performs maximization with respect to the parameters y:

ynþ1 ¼ arg max
y

QðyjynÞ. (16)

In term of F, the M-step can be expressed as

ynþ1 ¼ arg max
y

FðQnþ1; yÞ. (17)

Hence, an approximation can be used in either the E-step or the M-step as long as F is increasing.
An attractive feature of the EM-algorithm for parameter estimation is the guaranteed convergence [15,19].

However, depending on the initial guess, the algorithm may only converge to a local maximum. Various
strategies for choosing the initial guess are proposed in Ref. [20], and techniques for accelerating the
convergence are reported in Ref. [21].

We recall that for an oscillating airfoil with a freeplay nonlinearity, the mathematical formulation can be
expressed by the set of linear systems given in Eq. (7). Since only a and x are observed in practice, Eq. (7) can
be rewritten as a linear discrete switching state-space system:

xkþ1 ¼ ASkþ1
xk þ bSkþ1

þ vkþ1;

yk ¼ Cxk þ wk;

(
(18)

where Skþ1 is a discrete random variable given by

Skþ1 ¼

1 if xkð1Þoaf ;

2 if af pxkð1Þpaf þ d;

3 if xkð1Þ4af þ d;

8><
>: (19)
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where Ai and bi, i ¼ 1; 2; 3 are defined in Eq. (7), yk ¼ ½a; x�
T
k is the two-dimensional observation vector,

xk ¼ ½a; a0; x; x
0;o1;o2;o3;o4�

T
k is the eight-dimensional state vector, vk�Nð0;QSk

Þ and wk�Nð0;RÞ are
independent Gaussian white noise vectors, Qi, i ¼ 1; 2; 3 are 8� 8 matrices, R is a 2� 2 matrix, and C is the
2� 8 matrix

C ¼
1 0 0 . . . 0

0 1 0 . . . 0

� �
. (20)

Once af and d are estimated using the non-parametric method presented in the previous section, the values of
the switching variable Sk are known. Moreover, we assume that when S1 ¼ i, we have x1�Nðli;RiÞ, for
i ¼ 1; 2; 3. Hence, the unknown parameters of the previous model are y ¼ fAi; bi;Qi;R;li;Ri, i ¼ 1; 2; 3g.

We now summarize the steps in the EM algorithm for estimating the parameters y. First, the data is
augmented with the hidden variables a0, x0, o1, o2, o3, o4 which are included in the state variables xi,
i ¼ 1; . . . ;N, and the complete log-likelihood logðLÞ ¼ logPðx1; . . . ;xN ; y1; . . . ; yN ;S1; . . . ;SN Þ is computed.
Then, the EM algorithm iteratively maximizes Ê ¼ E½logðLÞjy1; . . . ; yN ;S1 ¼ i1; . . . ;Sn ¼ in�, which can be
expressed in terms of the smoothed values Pn ¼ E½xnx

T
n jy1; . . . ; yN �, Pn;n�1 ¼ E½xnx

T
n�1jy1; . . . ; yN �, and xnjN ¼

E½xnj y1; . . . ; yN �. In the E-step, Pn, Pn;n�1 and xnjN are estimated using the Kalman filtering and smoothing
algorithms [16]. For the M-step, analytical updating equations for the parameters y can be derived by taking
the derivatives with respect to the parameters y in the formula for Ê. For completeness, the log-likelihood and
the updating formulas are given in Appendix A.

The complexity of the parameter estimation process depends on the number of unknown parameters y. For
a matrix of order eight, there are 64 unknown coefficients to be estimated. Notice that in
xk ¼ ½a; a0; x; x

0;o1;o2;o3;o4�
T
k , only the first four are physical variables, and the remaining four are

introduced to eliminate the integral formulations from the aerodynamic terms. Hence, for the two-dof pitch
and plunge motion of an airfoil it is reasonable to consider a reduced model with xk ¼ ½a; a0; x; x

0
�Tk , and a0, x0

as the only hidden variables. Using this model, the number of the unknown parameters is greatly reduced. For
a matrix of order four, 16 unknown coefficients need to be determined. From the results to be presented in the
case studies (Section 5), we will see that the reduced system is as effective as the full model in predicting the
aeroelastic behavior.

The techniques presented in this paper can be extended to the three-dof aeroelastic models. The governing
equations for a three-dof aeroelastic system with a freeplay control surface can be written as the set of 12
nonlinear ordinary differential equations derived in Ref. [22]. The non-parametric method has been tested to
data arising from the three-dof system, and the freeplay nonlinearity and the locations of the switching points
were successfully identified [23]. For the steady-state response prediction, the EM algorithm can still be
applied as long as the associated mathematical model can be expressed in a state-space form (see Refs. [17,18]
for applications regarding general nonlinear systems). However, a similar reduced model for the three-dof
aeroelastic problems has not been attempted.

5. Case studies

To identify the freeplay structural nonlinearity, we apply the non-parametric method presented in Section 3.
This technique has been tested for data generated from wind tunnel experiments and numerical simulations [5].
Table 2

Case studies: numerically simulated data

Pitch Plunge za zx

Freeplay, a ¼ 0:2, d ¼ 0:4 Linear, GðxÞ ¼ x 0 0

Freeplay, a ¼ 0:2, d ¼ 0:4 Linear, GðxÞ ¼ x 0.1 0.1

Freeplay, a ¼ 0:25, d ¼ 0:5 Linear, GðxÞ ¼ x 0 0

Freeplay, a ¼ 0:25, d ¼ 0:5 Cubic, GðxÞ ¼ 3x3 þ x 0 0

Freeplay, a ¼ 0:25, d ¼ 0:5 Cubic, GðxÞ ¼ 0:3x3 þ x 0 0

Freeplay, a ¼ 0:4, d ¼ 0:25 Linear, GðxÞ ¼ x 0.0154 0.0109
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Table 2 lists six cases in which a freeplay is imposed in the pitch dof, and linear or cubic springs are imposed
in the plunge dof. These data are simulated numerically using Eq. (3), and they are corrupted with additive
Gaussian white noise with a signal-to-noise ratio of five. The results of the non-parametric method are
best illustrated by analyzing the plots of the non-parametric estimates m̂j against the pitch angle, for various
values of j.

Fig. 4 shows the estimated mean plots for the last case listed in Table 2, i.e. a freeplay in pitch with af ¼ 0:4,
d ¼ 0:25, and the model has non-zero damping coefficients za ¼ 0:0154 and zx ¼ 0:0109. We note that initially
the estimated conditional means (corresponding to j ¼ �1, �2, �3) can be approximated by straight lines. As
the values of j decrease, the conditional mean can no longer be represented by a straight line. The bending
becomes more noticeable and the estimated conditional mean resembles the letter ‘‘Z’’ or its mirror image.
When j ¼ �18 or j ¼ �22, (see Fig. 4(b),(c)) we clearly observe two extreme values near 0.4 and 0.65, and the
locations of these extremes correspond to the switching points af and af þ d in the aeroelastic model. Since we
can identify two switching points, we conclude that the aeroelastic data is associated with a freeplay. In this
case, the locations of the switching points af ¼ 0:4, d ¼ 0:25 are determined exactly.

Based on results from many simulations with various signal-to-noise ratios, we can conclude that the non-
parametric method is robust to the presence of noise. To illustrate this, we present the results obtained for the
noisy data displayed in Fig. 5a. These data correspond to an aeroelastic system with a freeplay in pitch with
af ¼ 0:25 and d ¼ 0:5. We have added Gaussian white noise such that the signal-to-noise ratio is three. The
system has zero damping coefficients, the non-dimensional linear fluter speed U�L ¼ 6:2851, and the non-
dimensional free stream velocity U� ¼ 0:3U�L, corresponding to the chaotic case investigated in Ref. [24]. The
chaotic motion is shown by the ‘‘two-well potential’’ phase-trajectory in the a–a0 plane displayed in Fig. 5b. In
Fig. 6 we present the non-parametric estimates m̂j, for j ¼ �4;�11, and �12, plotted against the pitch angle.
The figures are similar to those displayed in Fig. 4. We can identify two switching points located at af ¼ 0:25
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and af þ d ¼ 0:75. Thus, the complex chaotic dynamics and the presence of a large amount of noise do not
affect the performance of the non-parametric method.

The non-parametric method has also been applied to data obtained from experiments. In Fig. 7, we display
the mean plots corresponding to experimental freeplay data with d ¼ 1:45 degrees obtained from McGill
University. The estimated switching points are located at af ¼ �1 and af þ d ¼ 1 approximately. Thus, the
estimated d̂ is 2 degrees. For two other sets of experimental data with freeplay with d ¼ 0:64 and 0.25 degree,
we obtain the estimated d̂ to be 1 and 0.4 degree, respectively. The non-parametric method usually gives less
accurate predictions of the freeplay parameters for wind-tunnel tests data than for numerically simulated data.
In numerical simulations noise is added to the pitch and plunge signals, but in experiments the noise and the
signals cannot be separated. However, in the following we will show that the system identification is not very
sensitive to the error in d̂, and accurate predictions can still be obtained regardless whether the data is
generated from experiments or numerical simulations.

Once the presence of a freeplay is confirmed and the locations of the switching points are estimated, the EM
algorithm is used to estimate the parameters of the switching state-space model given in Eq. (18). Then, the
aeroelastic response is predicted using the reconstructed switching model.

The available transient data are divided into a training and a test set. The training set is used for estimating
the parameters, and the test set is used for checking the accuracy of the predictions. From our experience, the
number of observations that need to be included in the training set depends on the given signal, and the
number of parameters to be estimated. To obtain accurate estimations and predictions, the training set should
be formed using the majority of the available observations, so that the main features of the given transient
signal are included. For example, a training set formed only by a part of the observations corresponding to
one oscillation, or by observations with constant values, will not be appropriate. The fast convergence of the
EM algorithm, the substantial increase in the estimated value of the likelihood, and the small one-step
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prediction errors, all point to the fact that the estimated model will give a good fit for the data. However, the
accuracy of the results obtained for the test set is the best measure of the confidence we should have on the
estimated model and the predicted steady-state aeroelastic response. Without using a full cross-validation
procedure, we have tried several training sets, with increasing number of points or using different time
segments of the given transient data. Once the training set becomes large enough, the results should be
consistent when comparing the predicted signals.

In this paper, results of three case studies are reported. The first two data sets are from wind-tunnel tests
carried out at McGill University, and the third data set is from a numerical simulation using the model given
in Eqs. (1) and (2).

For the first signal shown in Fig. 2a, the amplitude of the first few cycles of the input data is increasing.
Based on these data, one could not conclude whether the future time series will diverge or will reach a limit
cycle oscillation. However, the ES predictions (dashed lines) are in an excellent agreement with the
experimental data (solid lines) in terms of the amplitude and frequency of the LCOs, as shown in Fig. 8. The
input data are taken from k ¼ 91 to k ¼ 240, and are separated by the two vertical lines in Fig. 8 (the time axis
in Fig. 2a has been shifted, and k ¼ 1 corresponds to k ¼ 91 in Fig. 8). In Fig. 9, we illustrate the convergence
of the parameter estimation method by plotting the log-likelihood versus the number of cycles used in the EM
algorithm. A very rapid convergence is achieved at the beginning, followed by a slow improvement as more
EM steps are applied. This is a typical characteristic of the EM algorithm [21]. In practice, the EM algorithm
is terminated when the improvement in the log-likelihood becomes small. For this particular case, we stopped
the EM algorithm after 15 cycles. We note that accurate predictions are obtained even though the switching
state-space model is not using the exact locations of the switching points, because the estimated d̂ is 2 degrees,
but the correct d is 1:45 degrees.

The second set of experimental data displayed in Fig. 10 has a more complex behavior. Using the non-
parametric method, we confirm the freeplay model with the estimated switching points at af ¼ �0:2 and
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af þ d ¼ 0:05. To better illustrate the effectiveness of the proposed ES, we consider two different input data
sets using two different segments of the time series.

The first data set corresponds to k ¼ 86 to k ¼ 260, as indicated by the two vertical lines in Fig. 10 (see also
Fig. 2b which shows the first six cycles of data with time axis shifted such that k ¼ 1 corresponds to k ¼ 86 in
Fig. 10). Based on the profiles given by these input data for the pitch and plunge motions, it is not possible to
predict that the subsequent aeroelastic responses are represented by oscillations with almost constant
amplitude, and then followed by a sharp decay to steady-state non-oscillating solutions. In Fig. 10, we
compare the experimental data (solid lines) with the results (dashed line) obtained using 56 cycles of the EM
algorithm to estimate the system parameters. The agreement is remarkable, we have accurate predictions of
the short term LCOs, as well as long term non-oscillating steady-state behavior. However, the steady solutions
appear around k ¼ 500 instead of k ¼ 750 as recorded from the experiment.

The second data are taken from k ¼ 301 to k ¼ 475, as shown by the two vertical lines in Fig. 11. The input
pitch and plunge are in LCO regions (see also Fig. 2c with the time axis shifted such that k ¼ 1 corresponds to
k ¼ 301 in Fig. 11). After applying 36 cycles of the EM algorithm, we obtain the predicted responses (dashed
line) shown in Fig. 11. They are in excellent agreement with the experimental results plotted with solid lines,
and they show the rapid change from LCO to non-oscillating behavior.

We also consider a set of input data generated by numerical simulation. Using the signal displayed in
Fig. 2d as training set, we obtain the predicted response plotted with dashed lines as shown in Fig. 12 (the time
axis is shifted and k ¼ 1 in Fig. 2d corresponds to k ¼ 66 in Fig. 12). Even though the initial three cycles
(shown by two vertical lines in Fig. 12) appear to behave like LCOs, the ES accurately predicts a divergent
response.

The previous three sets of data correspond to steady-state responses represented by LCOs, constant
amplitude non-oscillating signals and divergent signals. Both the non-parametric method and the EM
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algorithm give very good results for these data. Moreover, we have successfully applied the non-parametric
method also for the chaotic data displayed in Fig. 5a. Chaotic motion by definition implies that the dynamic
behavior is highly sensitive to the initial conditions, in which a small perturbation in the initial condition could
lead to significant changes in the future behavior. Hence, it may not be meaningful to expect that the expert
system can accurately predict the future time history of a chaotic motion using a limit transient data as input.
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However, the EM algorithm and the Kalman filter can still be applied for filtering noisy chaotic data.
Currently, we are working on some alternative techniques for studying chaotic data.
6. Conclusions

An expert system is developed to predict steady-state nonlinear aeroelastic behavior. The study focuses on
aeroelastic data arising from a two-dimensional airfoil oscillating in pitch and plunge, and the source of the
structural nonlinearity is due to freeplay in the pitch dof. The success of the ES requires the parameters of the
freeplay structural nonlinearity to be determined first. Consequently, a linear system identification technique is
effectively applied to reconstruct the switching state-space aeroelastic system.

The ES is tested on short duration transient data generated from experiments and numerical simulations.
The examples considered are chosen so that deducing long term behavior from observation of the input time
series is not possible or reliable. In all cases, the ES correctly predict the steady-state responses including
LCOs, divergent oscillations and constant non-oscillating solutions. The technique has been validated from a
number of test cases, and our overall assessment is that the present data driven expert system is a useful tool in
the study of nonlinear aeroelasticity. The present formulation is capable to accurately predict the steady-state
behavior for an aeroelastic system with freeplay in situations where only short duration transient data are
available and long term behavior is required. It is straightforward to extend this method to aeroelastic data
with hysteresis nonlinearity. It will be of interest to investigate the performance when the input data is
generated from a system subject to both nonlinear aerodynamic forces and structural nonlinearities.
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Appendix A. Updating formulas for the EM algorithm

The complete log-likelihood is given by

logðLÞ ¼ logPðx1; . . . ; xN ; y1; . . . ; yN ;S1; . . . ;SNÞ ¼ logPðyN jyN�1; . . . ; y1,

xN ; . . . ;x1;SN ; . . . ;S1Þ þ � � � þ logPðy1jxN ; . . . ; x1;SN ; . . . ;S1Þ þ logPðxN j

xN�1; . . . ;x1;SN ; . . . ;S1Þ þ � � � þ logPðx1jSN ; . . . ;S1Þ þ logPðSN ; . . . ;S1Þ.

Using Eq. (18) we obtain

logðLÞ ¼ � 5N lnð2pÞ �
1

2
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Þ þ logPðSN ; . . . ;S1Þ. (21)

Let tr denote the trace of a matrix. Then using the previous formulas and trðABÞ ¼ trðBAÞ, we can calculate
Ê ¼ E½logðLÞjy1; . . . ; yN ;S1 ¼ i1; . . . ;SN ¼ iN �:
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Taking the derivatives with respect to the parameters y in the previous formula for Ê, we derive the updating
equations for the parameters [16] from the k-step to the k þ 1-step:
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biðk þ 1Þ ¼
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liðk þ 1Þ ¼ x1jN ; Riðk þ 1Þ ¼ P1 � x1jNx
T
1jN . (28)

Here i ¼ 1; 2; 3, A3ðk þ 1Þ ¼ A1ðk þ 1Þ, and 1O denotes the characteristic function of the set O.
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